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INTRODUCTION

» Accurate tumor segmentation is essential for effective radiotherapy planning, ensuring precise radiation delivery
while minimizing harm to surrounding healthy tissues. However, manual segmentation by radiation oncologists is
time-consuming, subjective, and prone to inter-observer variability and can introduce inconsistencies in treatment
planning that may affect patient outcomes.

> While PET/CT enhance segmentation accuracy, their high costs and limited accessibility restrict their use in many
clinical settings. Since CT remains the most widely available imaging modality; developing a reliable Al-driven
segmentation approach is highly beneficial.

» Deep learning, particularly UNet-based architectures, has shown significant promise in medical image analysis by
enabling automated, high-precision tumor delineation, improving segmentation accuracy, consistency, and reduce
the time required for manual annotations.

» To develop a fully automated CT-based segmentation model using the self-configurable 3D nnU-Net framework,
improving segmentation accuracy, reproducibility, and accessibility while reducing dependency on PET/CT imaging.

KEY FINDINGS

> Public Dataset (n = 136): The model achieved a DSC of 0.76 and an HD95 of 12.67 mm, demonstrating high

segmentation accuracy and precise boundary detection on the public dataset.
> Private Dataset (n = 30): The model showed lower performance with a DSC of 0.63 and an HD95 of 20.05 mm,

Indicating potential challenges due to data quality or imaging differences in the private dataset.

» Combined Datasets: When both datasets were merged, the model achieved an intermediate DSC of 0.72 and an
HD95 of 15.74 mm, underscoring that effective preprocessing and training strategies can mitigate variability and
enhance overall performance.
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Training cohort (n=142)
HNI -122 samples (86%)
HNC -20 samples (14%)

Testing cohort (n=24)
HNI -14 samples (58%)
HNC -10 samples (42%)
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RESULTS

Ablation Study

> Preprocessing applied: cropping to 256x256 and windowing (WL=40, WW=400).
» Compared nnU-Net configurations: 3D Full Resolution vs. Residual Encoder L
» Selected 3D Full Resolution due to superior performance.

_ _ Performance on Cropped and Preprocessed Data
Configuration

Epochs DSC Precision Recall HD95 (in mm)
_ 500 0.59 0.60 0.58 16.08
3D Full Resolution
2000 0.66 0.63 0.70 16.56
3D Full Resolution 200 0.63 0.58 0.69 16.80
+ Residual
Encoder L 2000 0.65 0.62 0.68 15.13
Cross Validation & Optimization

» Optimization via SGD with Nesterov momentum.

» Loss function: Combination of Cross-Entropy and Dice Loss.

» Employed 3-fold cross validation to minimize test set bias.

» Experiments conducted on an NVIDIA DGX Station (Tesla V100, 32 GB), using CUDA Toolkit 11.8.0, Python 3.9, and PyTorch
1.11.

Datasets Average Results of Three-Fold Cross Validation Across Combined and Individual Datasets

DSC Precision Recall HD95 (in mm)
HNI 0.76 0.71 0.83 12.67
CMC 0.63 0.55 0.80 20.05
HNI + CMC 0.72 0.65 0.82 15.74
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The qualitative visualization of the segmentation results are illustrated in above figure, where the red boundary

(d)

represents the ground truth, and Images (a), (b), and (c)
correspond to examples from the public HNI dataset while (d), (e), and (f) are from the private HNC dataset

Enhances accessibility in resource-limited settings, making automated segmentation more feasible for clinical
Integration. Future work could explore integrating nnU-Net with MedSAM or fine-tuning nnU-Net with bounding box-
based localization to further enhance segmentation performance. Additionally, expanding the dataset to include more
diverse patient populations could improve the model’s generalization.
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