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Abstract
Purpose: Predicting risk of recurrence remains a major
challenge in head and neck cancer (HNC), current clinical
practice fails to account for patient-specific variability in
tumour biology. Radiomics, by converting CT scans into
quantitative descriptors, provides a high-dimensional sub-
strate for computational risk modelling. This study uses a
prospectively collected HNC cohort (2020–2024) to carefully
test different machine learning (ML) pipelines with meta-
heuristic feature selection for predicting LRR, with the goal
of building reproducible and clinically relevant risk-adaptive
tools.

Methods: A total of 1466 patients were enrolled prospec-
tively under a standardized radiomics protocol, with 367
primary radiation patients selected for analysis based on
inclusion/exclusion criteria. Contrast-enhanced planning
CT scans were used to extract first-order, shape, and tex-
ture radiomic features. We constructed 42 ML pipelines by
combining six classifiers (Logistic Regression, Naive Bayes,
Linear SVM, RBF SVM, Decision Tree, Random Forest)
with seven feature selection methods: SelectKBest, LASSO,
and five population-based metaheuristic algorithms [Particle
Swarm Optimization (PSO), Whale Optimization Algorithm
(WOA), Grey Wolf Optimizer (GWO), Genetic Algorithm
(GA), Simulated Annealing (SA)]. Hybrid pipelines were also
developed, where Bootstrap-LASSO pre-filtered stable fea-
tures before metaheuristic selection to overcome overfitting.
Models were trained and evaluated under stratified 5-fold
cross-validation and independent test splits, with ROC AUC
and accuracy as primary metrics.

Results: The Bootstrap-LASSO + PSO + Random Forest
pipeline achieved the highest test performance (ROC AUC
= 0.80, accuracy = 0.84). Comparable results were obtained
with Bootstrap-LASSO + GWO and Bootstrap-LASSO + GA.
Recurrent predictive features included shape descriptors (e.g.,
maximum 2D diameters, sphericity) and texture heterogeneity
measures (e.g., GLCM information measures, GLRLM run-
length non-uniformity), suggesting that tumour geometry and
intra-tumoural texture patterns are key markers of recurrence
risk.

Conclusions: This study demonstrates that prospec-
tively collected, protocol-driven datasets combined with
metaheuristic-enhanced ML pipelines provide a robust and
interpretable strategy for recurrence prediction in HNC. By
uniting data standardization with algorithmic benchmarking,
this work establishes a foundation for risk-adaptive follow-up
strategies and sets the stage for future multicentre validation.
Keywords— Head and Neck Cancer, Deep Learning, Ra-
diomics

1 Introduction
Locoregional recurrence (LRR) in head and neck cancer
(HNC) remains one of the most pressing challenges in oncol-
ogy. Despite advances in radiation delivery and multimodality
care, recurrence rates remain high, eroding long-term survival
and quality of life. The challenge lies not only in treating re-
currence, but in anticipating it early enough to enable adaptive
follow-up and timely intervention.

Over the past decade, radiomics has emerged as a promising
approach to address this gap by converting routine CT imaging
into quantitative descriptors of tumour phenotype. These
features capture aspects of tumour shape, intensity, and texture
that may reflect biological heterogeneity invisible to human
observers. However, progress in radiomics-based recurrence
prediction has been limited by three persistent issues: (i) Most
prior studies rely on retrospective cohorts collected under
heterogeneous imaging protocols, introducing uncontrolled
variability and undermining reproducibility; and (ii) High
dimensionality of radiomic features (𝑝 ≫ 𝑛) makes models
highly sensitive to the choice of feature selection and classifier,
leading to instability and inconsistent results.

Our work addresses these gaps by combining prospective,
protocol-driven data collection with rigorous benchmarking
of machine learning (ML) pipelines. Between 2020 and
2024, a cohort of more than 1466 HNC patients was enrolled
under a standardized radiomics protocol, from which 367
primary radiation patients were selected for analysis. Our
dataset includes high-quality imaging, clear rules for select-
ing patients, and reliable follow-up, resulting in a higher
recurrence rate ( 43% within one year) that makes it strong
for building predictive models. On the algorithmic side, we
systematically evaluate the interaction between feature selec-
tion and classification, incorporating not only conventional
approaches such as SelectKBest and LASSO, but also a family
of population-based metaheuristic algorithms that can navi-
gate complex feature spaces. To further enhance stability, we
introduce a hybrid feature selection framework that combines
Bootstrap-LASSO pre-filtering with metaheuristic search.

The key contributions of this study are as follows:

• C1: Establishment of a large prospective protocol-driven
dataset of head and neck cancer patients (2020–2024) under
a standardized radiomics imaging protocol and follow-up,
with 367 primary radiation patients selected for recurrence
prediction.

• C2: Development and benchmarking of 42 ML pipelines
combining six classifiers with seven feature selection
strategies, including a novel hybrid framework (Bootstrap-
LASSO + metaheuristics), demonstrating improved robust-
ness compared to conventional methods.



• C3: Identification of reproducible radiomic signatures
(shape and texture heterogeneity features) linked to re-
currence risk, highlighting their potential translational
relevance for individualized follow-up strategies.

2 Related Work

3 Methods
This prospective study was conducted between 2020 and 2024
at Christian Medical College under a standardized radiomics
protocol. A total of 1466 patients with histopathologically
confirmed head and neck squamous cell carcinoma (HNSCC)
were recruited, of which 367 patients treated with primary
radiation were selected for analysis. Eligibility required
patients to be 18–70 years of age, an ECOG performance
score ≤ 2, stage >T2 and/or N1+ disease, baseline contrast-
enhanced CT before treatment, and at least one year of
structured follow-up or documented locoregional recurrence
(LRR). Patients with prior head and neck cancer, distant
metastasis at baseline, previous radiotherapy, imaging artifacts
interfering with segmentation, or incomplete treatment were
excluded. Gross tumour volumes (GTVs) were delineated
by expert radiation oncologists according to institutional
guidelines and exported in DICOM RTSTRUCT format.
All CT images were acquired using standard radiotherapy
planning CT protocols with a 512 × 512 matrix and 3 mm
slice thickness. Ethical approval was obtained, and data were
anonymized before analysis.

Figure 1: Patient selection and dataset splitting flowchart

All scans were preprocessed in accordance with the Im-
age Biomarker Standardisation Initiative (IBSI) guidelines.
Images were resampled to 1 × 1 × 1 mm3 isotropic voxels
using B-spline interpolation and discretized with a fixed
bin width of 25 Hounsfield Units. Radiomic features were
extracted using PyRadiomics v3.1.0, yielding a total of
105 original features per patient. These included first-order
intensity statistics (e.g., mean, variance, skewness, kurtosis),
shape descriptors (e.g., volume, surface area, sphericity, max-
imum 2D/3D diameters), and texture features derived from
grey-level co-occurrence (GLCM), run-length (GLRLM),
size-zone (GLSZM), dependence (GLDM), and neighbour-
ing grey-tone difference (NGTDM) matrices. No wavelet
or Laplacian-of-Gaussian filtering was applied to maintain
interpretability and reproducibility.

To address the high dimensionality of radiomics data and

the risk of model overfitting due to the limited sample size
(𝑝 ≫ 𝑛), we implemented seven feature selection methods:
SelectKBest, LASSO, and five population-based metaheuris-
tic algorithms [Particle Swarm Optimization (PSO), Genetic
Algorithm (GA), Whale Optimization Algorithm (WOA),
Grey Wolf Optimizer (GWO), and Simulated Annealing
(SA)]. LASSO was formulated as:

𝛽 = arg min
𝛽

{
1
2𝑛

∥𝑦 − 𝑋𝛽∥2
2 + 𝜆∥𝛽∥1

}
(1)

where 𝑋 is the feature matrix, 𝑦 the recurrence labels, and 𝜆
the penalty parameter. Metaheuristics were adapted to binary
feature selection, where each candidate subset 𝑆 ⊆ {1, . . . , 𝑝}
was evaluated using a fitness function defined by classifier
performance:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) = 𝐴𝑈𝐶 ( 𝑓 (𝑋𝑆), 𝑦) (2)

with 𝑋𝑆 denoting the submatrix of selected features and 𝑓

the classifier. To improve stability, we implemented a hybrid
pipeline in which Bootstrap-LASSO was first applied across
1000 resampled training sets to identify consistently selected
features; the resulting reduced pool was then refined by one
of the metaheuristics.

The dataset was partitioned into 80% training and 20%
test sets with stratified sampling to preserve class balance.
Stratified 5-fold cross-validation within the training set was
used for both feature selection and hyperparameter tuning to
prevent information leakage. For selected pipelines, bootstrap
resampling (𝑛 = 1000) was used to estimate 95% confidence
intervals for ROC AUC. Final model performance was re-
ported using ROC AUC and accuracy.

4 Results

A total of 44 machine learning models were constructed
by combining six classifiers with seven feature selection
methods, along with two hybrid pipelines using Bootstrap-
LASSO followed by metaheuristic optimization. All models
were evaluated on an 80/20 stratified split, with ROC AUC
and accuracy as the primary metrics.

4.1 Radiomics Features

Table 1 summarizes the performance of classifiers when
trained solely on radiomic features. Models were evaluated
across all seven feature selection techniques, with results
reported as ROC-AUC (Train / Validation / Test) along with
95% confidence intervals.

4.2 Clinical Features

Table 2 summarizes the performance of classifiers when
trained solely on clinical features. The same feature selection
methods were applied, and performance metrics were reported
consistently as in Table 1.
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Classifier LASSO SelectKBest PSO WOA GWO GA SA

Logistic Regression 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Naive Bayes 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Linear SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

RBF SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Decision Tree 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Random Forest 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Table 1: Performance comparison of machine learning models using radiomic features. ROC-AUC with 95% CI values is
reported for (Train/Validation/Test)

Classifier LASSO SelectKBest PSO WOA GWO GA SA

Logistic Regression 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Naive Bayes 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Linear SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

RBF SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Decision Tree 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Random Forest 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Table 2: Performance comparison of machine learning models using clinical features. ROC-AUC with 95% CI values is
reported for Train/Validation/Test

4.3 Combined Radiomics and Clinical Fea-
tures

Table 3 shows results for models trained on combined radiomic
and clinical features. Performance was again reported across
all classifiers and feature selection methods.

4.4 Hybrid Feature Selection (Radiomics)
To enhance robustness, hybrid pipelines were developed by
combining Bootstrap-LASSO filtering with metaheuristic
selection. Table 4 reports model performance using radiomic
features under this hybrid pipeline setup.

4.5 Hybrid Feature Selection (Radiomics +
Clinical)

Finally, Table 5 summarizes the results of the hybrid feature
selection pipelines applied to the combined radiomic and
clinical feature space.

5 Discussion
This study demonstrates that recurrence prediction in head
and neck cancer depends strongly on how features are selected
and integrated. Radiomics alone provided informative pat-
terns, but combining them with clinical variables produced
more consistent models, showing that both data types add
value. Metaheuristic algorithms outperformed conventional
selectors, and the hybrid Bootstrap-LASSO approach gave
more stable results across resamples. Stability in feature
selection is critical, as unstable models cannot be trusted in
practice, and this framework directly addresses that challenge.

A key strength of this work is the use of a prospective cohort
collected under a standardized imaging protocol between
2020 and 2024, reducing the inconsistencies that often limit
radiomics studies. Focusing on patients treated with primary
radiation makes the findings directly relevant to clinical
decision-making at treatment planning. The analysis remains
limited by its single-institution scope, and external testing
will be essential before clinical use. Still, the results indicate
that well-designed machine learning pipelines can generate
reliable risk estimates from data already available in routine
care, providing a path toward individualized follow-up in
head and neck oncology.

6 Conclusion

This study presented a systematic benchmarking framework
for predicting locoregional recurrence in head and neck cancer
using a prospective, protocol-driven dataset. By evaluating
multiple classifiers and feature selection strategies, and in-
troducing hybrid metaheuristic approaches, we established a
modelling pipeline that emphasizes stability, reproducibility,
and practical relevance. The combined use of radiomic and
clinical features further strengthened performance, under-
scoring the importance of integrating complementary data
sources.

Future work will focus on external validation across multi-
institutional cohorts, the development of explainability tools
to build clinician trust, and the creation of a user-friendly
interface that allows recurrence risk to be estimated directly
at treatment planning. These steps will be essential to trans-
late the present findings into decision-support systems that
can guide personalized follow-up and improve outcomes for
patients with head and neck cancer.
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Classifier LASSO SelectKBest PSO WOA GWO GA SA

Logistic Regression 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Naive Bayes 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Linear SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

RBF SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Decision Tree 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Random Forest 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Table 3: Performance comparison of machine learning models using combined radiomic and clinical features. ROC-AUC
with 95% CI values is reported for Train/Validation/Test

Classifier LASSO SelectKBest PSO WOA GWO GA SA

Logistic Regression 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Naive Bayes 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Linear SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

RBF SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Decision Tree 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Random Forest 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Table 4: Performance comparison of machine learning models using hybrid feature selection pipelines (Bootstrap-LASSO +
metaheuristics) with radiomic features. ROC-AUC with 95% CI values is reported for Train / Validation / Test sets
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Classifier LASSO SelectKBest PSO WOA GWO GA SA

Logistic Regression 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Naive Bayes 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Linear SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

RBF SVM 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Decision Tree 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Random Forest 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx 0.xx/0.XX/0.xx

Table 5: Performance comparison of machine learning models using hybrid feature selection pipelines (Bootstrap-
LASSO + metaheuristics) with combined radiomics and clinical features. ROC-AUC with 95% CI values is reported for
(Train/Validation/Test)
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