Chapter 15

Cancer survival prediction
using artificial intelligence:
current status and future
prospects

15.1 Introduction

The COVID-19 pandemic has significantly impacted cancer patients, particularly in terms of limited access to healthcare
services and necessary medical care. This has led to delays in cancer diagnoses, postponement of treatments, and decreased
patient follow-up, all of which have the potential to negatively impact cancer patient outcomes (Al-Quteimat & Amer,
2020). However, artificial intelligence (Al)-based approaches for cancer survival prediction have emerged as promising
solutions to improve cancer patient care during the pandemic (Ahmedt-Aristizabal et al., 2022; Alzubaidi et al., 2021;
Ching, 2018; Cruz & Wishart, 2007; Fatima et al., 2020; Hosni et al., 2019; Huang et al., 2020; Li, Huang, et
al., 2022; Mihaylov et al., 2019; Picard et al., 2021; Si et al., 2021; Tran et al., 2021; Zhang et al., 2021; Zhu et
al., 2020). These Al-based approaches can help healthcare providers identify patients who are at higher risk of negative
outcomes and provide targeted interventions to improve their chances of survival (Raju et al., 2020). Cancer survival
prediction refers to the estimation of the likelihood that a patient will survive the disease over a certain period, such as 5
years by analyzing clinical, patient demographic, molecular, and pathological data. Cancer survival prediction is crucial
for patients and clinicians for several reasons (Kim et al., 2022). Firstly, it allows healthcare professionals to estimate a
patient's prognosis and tailor their treatment plan accordingly. This can help identify patients at high risk of disease pro-
gression or recurrence, enabling clinicians to provide personalized and timely interventions, avoid over or undertreatment,
and reduce unnecessary side effects and costs. Additionally, cancer survival prediction can aid in clinical trial design and
patient selection, ultimately leading to more effective treatments. Finally, cancer survival prediction can help patients and
their families by providing a realistic expectation of their disease outcome and helping them to make informed decisions
about their treatment and prepare for the future.

The use of publicly accessible large-scale cancer databases such as Genomic Data Commons (Grossman et al., 2016),
Gene Expression Omnibus (Edgar et al., 2002), Molecular Taxonomy of Breast Cancer International Consortium (Curtis
et al., 2012), The Cancer Genome Atlas (TCGA) (Weinstein & Collisson, 2013), and the International Cancer Genome
Consortium (The International Cancer Genome Consortium, 2010) provides comprehensive genomic, transcriptomic,
and clinical information for a variety of cancer types, enabling the development of predictive models and the identification
of new biomarkers and therapeutic targets. Access to these databases can provide researchers and healthcare professionals
with valuable insights into cancer survival and aid in the development of more effective treatments. This valuable informa-
tion guides treatment decisions and helps clinicians to customize treatment plans based on the patient's unique characteris-
tics and the predicted likelihood of response to treatment (Kim et al., 2022). Additionally, the usage of publicly accessible
databases allows researchers from around the world to collaborate and data sharing among researchers, which can accel-
erate the development of innovative and improved cancer treatments. To visualize this process, Fig. 15.1 illustrates the
essential stages involved in applying Al techniques to predict cancer survival. The workflow encompasses critical stages
such as data collection and preprocessing, feature selection, model selection and training, and model evaluation and pre-
diction.

The structure of the remaining section in this paper is organized as follows. In Section 15.2, we present an overview
of diverse Al techniques applied in cancer survival prediction, including machine learning (MI), ensemble learning, deep
learning, graph representation learning (GRL), multimodal representation learning (MRL), and attention models. In Sec-
tion 15.3, we explore the various evaluation metrics utilized in cancer survival prediction. Following that, Section 15.4
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FIGURE 15.1  High-level workflow of artificial intelligence techniques for cancer survival prediction.

addresses the challenges and limitations associated with the implementation of Al techniques for predicting cancer survival
prediction. Finally, in Section 15.5, we will wrap up by discussing potential research directions in this critical field.

15.2 Literature review

In recent years, Al techniques have gained significant attention for their potential to improve cancer survival prediction
accuracy and enable personalized treatment, as well as their ability to process large and complex datasets and identify pat-
terns and relationships that may be challenging for human analysts to identify. Fig. 15.2 illustrates various Al techniques,
such as MI (Cruz & Wishart, 2007; Fatima et al., 2020; Mihaylov et al., 2019; Picard et al., 2021), ensemble learn-
ing (Hosni et al., 2019), deep learning (Alzubaidi et al., 2021; Ching, 2018; Huang et al., 2020; Si et al., 2021;
Tran et al., 2021; Zhu et al., 2020), GRL (Ahmedt-Aristizabal et al., 2022; Li, Huang, et al., 2022; Zhang et al.,
2021), MRL, and attention models. By integrating various data sources, such as clinical, genomic, and imaging data, these
techniques aim to enhance survival prediction accuracy and offer deeper in Fig. 15.2 sights into the factors influencing
cancer survival (Chen et al., 2019; Gao, 2022; Li, Huang, et al., 2022; Vale-Silva & Rohr, 2021; Wu et al., 2023;
Yan & Feng, 2022).

15.2.1 Classical machine learning techniques for cancer survival prediction

In this section, we will explore classical machine-learning techniques that have been applied to cancer survival prediction.
These include logistic regression, K-nearest neighbors, decision trees, naive Bayes (NB), and support vector machines. We
will discuss their principles, strengths, and weaknesses in the context of cancer prognosis.

15.2.1.1 Logistic regression

Logistic regression is a linear classification algorithm widely used for binary and multiclass classification tasks (Peng et
al., 2002). In the context of cancer survival prediction, it assesses the relationship between predictor variables and the
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FIGURE 15.2  Attificial intelligence techniques for cancer survival prediction used.

probability of a patient's survival outcome. By employing a logistic function, it transforms the continuous output into a
probability score ranging from 0 to 1.

15.2.1.2 K-nearest neighbors

K-nearest neighbors (KNN) is a nonparametric, instance-based algorithm used for both classification and regression tasks.
In the context of cancer survival prediction, KNN calculates the distance between a target patient and its KNN in the fea-
ture space. The algorithm then assigns the most frequent class or computes the average survival times of the k neighbors to
predict the survival outcome for the target patient (Shichao et al., 2018; Uddin et al., 2022).

15.2.1.3 Decision tree

Decision tree (DT) is a supervised learning algorithm based on a tree-like structure used for both classification and re-
gression tasks. In the context of cancer survival prediction, DTs recursively partition the feature space based on the most
informative features, creating a tree structure that aids in decision-making. Each internal node represents a feature, and
each leaf node corresponds to a predicted survival outcome. DTs are interpretable and allow capturing nonlinear relation-
ships between features, making them valuable for identifying important prognostic factors in cancer research (Lynch et
al., 2017).
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15.2.1.4 Naive Bayes

NB is a classification algorithm that leverages Bayes' theorem and probabilistic principles for predicting class probabili-
ties. Despite its “naive” assumption of feature independence, it has shown efficacy in various applications, including can-
cer survival prediction. In this context, NB calculates the posterior probability of a patient's survival status given the ob-
served features. It is particularly useful when dealing with high-dimensional datasets and offers computational efficiency
for large-scale studies (Cruz & Wishart, 2007).

15.2.1.5 Support vector machine

Support vector machine (SVM) is a robust supervised learning algorithm employed for classification and regression tasks,
known for its effective handling of complex data distributions. In the context of cancer survival prediction, SVM aims to
find the optimal hyperplane that maximizes the margin between different classes, effectively separating patients based on
their survival outcomes. SVM's ability to handle high-dimensional data and handle nonlinear relationships through kernel
functions makes it suitable for complex cancer survival prediction tasks (Lynch et al., 2017).

15.2.2 Ensemble learning techniques for cancer survival prediction

Ensemble learning techniques are powerful approaches that combine multiple models to improve predictive performance
and generalization. These methods combine individual model predictions to produce a more robust and accurate final pre-
diction (Hosni et al., 2019). In the context of cancer survival prediction, these techniques play a crucial role in enhancing
the strengths of diverse models to achieve more accurate and robust results.

15.2.2.1 Bagging

Bagging, also known as bootstrap aggregating, is designed to enhance the stability and accuracy of MI models (Breiman,
1996). In the context of cancer survival prediction, Bagging involves training multiple instances of the same base model
on different subsets of the training data, created through bootstrapping (random sampling with replacement) (Hosni et al.,
2019). Each model makes individual predictions, and the final prediction is obtained through majority voting (for classifi-
cation) or averaging (for regression) (Fatima et al., 2020).

15.2.2.2  Boosting

Boosting is an iterative technique that enhances the performance of weak learners to create a powerful predictive model.
In the context of cancer survival prediction, boosting starts by training a weak learner on the entire training dataset. Subse-
quent weak learners are trained on the instances that were misclassified by previous learners, assigning higher weights to
these instances to emphasize their importance. The ultimate prediction is derived by aggregating the weighted predictions
from all learners (Fatima et al., 2020; Hosni et al., 2019).

15.2.2.3 Stacking

Stacking, also known as stacked generalization, leverages the strengths of multiple diverse models to improve prediction
performance (David & Wolpert, 1992). In cancer survival prediction, stacking involves training multiple base models
on the training data and using their predictions as input to a higher-level metamodel. The metamodel then combines these
predictions to make the final prediction (Hosni et al., 2019). Stacking allows the model to benefit from the diverse per-
spectives of different base models, resulting in improved predictive power and better generalization (Fatima et al., 2020).

15.2.2.4 Random forest

Random forest constructs multiple decision trees on bootstrapped subsets of the data. It then combines their predictions
through majority voting (for classification) or averaging (for regression) (Lynch et al., 2017). In the context of cancer
survival prediction, random forest mitigates overfitting and enhances prediction accuracy by leveraging the collective in-
sights from multiple trees. Moreover, it offers feature importance rankings, enabling the identification of crucial prognostic
factors in cancer studies.
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15.2.3 Deep learning techniques for cancer survival prediction

Here, we will explore the application of deep learning techniques in cancer survival prediction. We will discuss convolu-
tional neural networks (CNNs) for medical imaging analysis, recurrent neural networks (RNNs) for sequential data, au-
toencoder for feature learning, GRL for complex data relationships, and MRL for integrating diverse data types, and atten-
tion models for identifying critical features. We will highlight how these advanced methods can capture intricate patterns
and relationships in cancer data, potentially revolutionizing survival prediction.

15.2.3.1 Convolutional neural network

CNN is a deep learning architecture specifically designed for image recognition tasks. In cancer survival prediction, CNN
can be applied to analyze medical imaging data such as MRI or CT scans (Kumar et al., 2022; Lee, 2023). It consists
of multiple layers, including convolutional, pooling, and fully connected layers. The convolutional layers apply filters to
extract spatial features from the input images, while the pooling layers reduce the spatial dimensions, preserving essential
information. CNNs have shown promising results in identifying tumor characteristics and aiding in personalized prognosis
based on medical images (Mostavi et al., 2020; Sinzinger et al., 2022).

15.2.3.2 Recurrent neural network

RNN is a type of deep learning architecture suitable for sequential data analysis, making it applicable to time-series data
like patient health records. In cancer survival prediction, RNNs can model the temporal dependencies between clinical
events and patient outcomes (Lee, 2023). The main strength of RNNs lies in their ability to capture long-range depen-
dencies in sequential data, allowing them to consider a patient's entire medical history for survival prediction. However,
traditional RNNs suffer from vanishing or exploding gradient problems, which led to the development of long short-term
memory and gated recurrent unit cells to address these issues (Hamed et al., 2020; LeCun et al., 2015).

15.2.3.3  Autoencoder

Autoencoders are unsupervised deep learning models used for feature learning and dimensionality reduction. In cancer sur-
vival prediction, an autoencoder can be employed to extract the most informative features from high-dimensional genomic
or imaging data (Kumar et al., 2022; Shen et al., 2023). The model consists of an encoder that compresses the input
data into a latent space representation and a decoder that reconstructs the original input from the compressed representa-
tion (Lee, 2023). By learning a compact and meaningful representation, autoencoder aids in reducing data complexity and
improving predictive performance.

15.2.3.4 Sparse autoencoder

Sparse autoencoder are a variant of autoencoder that introduces sparsity constraints to the hidden layer activations. The
sparsity constraint encourages only a small subset of the neurons in the hidden layer to be active, resulting in a more con-
cise and interpretable representation of the input data (Lee, 2023). In cancer survival prediction, a sparse autoencoder can
be applied to identify critical genomic features or biomarkers associated with patient outcomes (Wu & Fang, 2022).

15.2.3.5 Stacked sparse autoencoder

Stacked sparse autoencoder combines multiple layers of sparse autoencoder to create a deep architecture. Each layer learns
increasingly abstract and higher-level features, leading to a hierarchical representation of the input data (Kumar et al.,
2022; Lee, 2023). Stacked sparse autoencoder excel at capturing intricate patterns and complex relationships in cancer-re-
lated data, enabling accurate and detailed survival predictions (Xu et al., 2016).

Table 15.1 provides an overview of some pivotal studies that show the progress made in this field, focusing on the
integration of multiple modalities of data, from gene expression to wholUsedBreastsa e-slide images.

Table 15.1 illustrates the advancement of deep learning models in the realm of cancer survival prediction. Each study
not only presents a novel method or model but also underscores the increasing reliance on multimodal data. By leveraging
a combination of clinical, gene expression, histopathology, and other data modalities, these models achieve superior pre-
dictive performance, showcasing the potential of Al in reshaping oncological prognostics.



6  Data Science in the Medical Field

TABLE 15.1 Deep learning techniques used for cancer survival prediction.

Year

2023

2022

2022

2022

2019

2019

Author

Wu et al.
(2023)

Arya and
Saha (2022)

Kanwal et
al. (2022)

Li et al.
(2022)

Cheerla and
Gevaert
(2019)

Sun et al.
(2018)

Cancer type

Multiple (including breast, lung, and brain) contain

multimodalities including WSI, gene expression,
CNA, and clinical data.

Breasts contain multimodalities including (gene
expression, copy number alteration, and clinical
data).

Multiple (including brain, prostate, bladder,
colorectal, and breast) contain multimodalities.

Colorectal

Obtained from TCGA (including 20 different
cancer types) contain multimodalities including
clinical, gene expression, microRNA expression,
and histopathology WSIs data.

Breast contain multimodalities (including gene
expression, copy number alteration, and clinical
data).

Key finding

Proposed cross-aligned multimodal representa-
tion learning (CAMR).

CAMR effectively reduces modality gaps, gen-
erating both modality invariant and specific rep-
resentation for enhanced cancer survival predic-
tion.

Proposed stacked-based ensemble model archi-
tecture.

CNN for feature extraction then a stacked-based
approach utilizing three modalities of data im-
proves predictive performance, neighborhood.
Integrating especially for imbalanced datasets.

A novel framework was introduced that inte-
grates DL/ML and RL with AAA for improved
cancer prognosis prediction using multimodal
data, incorporating early and late fusion tech-
niques.

Developed a Distribution-based Multiple-In-
stance Survival Learning algorithm (DeepDis-
MISL).

Combined percentile-scored patches with high-
est and lowest scored ones, including neighbor-
hood instances around percentiles further boost
prediction accuracy.

Developed a DL survival model with multi-
modal representation.

Demonstrated efficient use of multimodal data,
even with missing modalities, proposed efficient
WSI analysis by sampling key region of interest.

Proposed Multimodal Deep Neural Network by
integrating Multi-dimensional Data
(MDNNMD).

MDNNMD integrates multidimensional data for
better prediction; and outperforms single-dimen-
sional methods.
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15.2.3.6  Graph representation learning for cancer survival prediction

The GRL technique has been gaining attention in recent years for its potential in cancer survival prediction. It involves the
use of graphs to represent data, with each node representing a data point and the edges between them representing relation-
ships or interactions between those data points (Li, Huang, et al., 2022). The goal is to learn a low-dimensional representa-
tion of the graph that captures its underlying structure and patterns. GRL has several advantages over traditional methods,
particularly in cases where the data is complex and heterogeneous, as is often the case with cancer data. It can effectively
capture the interactions between different types of data, such as genomic, clinical, and imaging data, and identify hidden
relationships that may not be evident through other methods (Ahmedt-Aristizabal et al., 2021).

For example, in a study on computational histopathology, graph convolutional networks (GCNs) were used to ana-
lyze digital pathology images (Ahmedt-Aristizabal et al., 2021; Chen et al., 2019; Curtis et al., 2012; Edgar et al.,
2002; Gao, 2022; Grossman et al., 2016; Li, Huang, et al., 2022; The International Cancer Genome Consortium,
2010; Vale-Silva & Rohr, 2021; Weinstein & Collisson, 2013; Wu et al., 2023; Yan & Feng, 2022). The whole
slide image (WSI) was represented as a graph, with each cell or region in the image represented as a node and the edges
representing spatial relationships between the nodes. By leveraging the power of GCNs, the study aimed to capture more
complex spatial relationships between different regions of the image and incorporate information about the local and global
context of each region, potentially improving the accuracy of the classification task and making the method more robust to
variations in the size, shape, and position of the regions of interest.

15.2.3.7 Multimodal representation learning for cancer survival prediction

MRL is a technique that involves integrating multiple types of data, such as genomics, imaging, and clinical data, to im-
prove cancer survival prediction. This approach has become increasingly popular in recent years, allowing for a more com-
prehensive and holistic view of the patient's condition (Wu et al., 2023). The benefit of MRL is that it can leverage the
complementary information from different data types to make more accurate predictions and also discover novel relation-
ships between different data types (Zhang et al., 2019). For example, one study used multimodal GNN to integrate gene
expression, copy number alteration, and clinical data to predict breast cancer survival. The GNN was able to capture the
complex relationships between the different data modalities by constructing a bipartite graph between patient and multi-
modal data, leading to improved survival prediction accuracy (Gao, 2022). Overall, we can say that this technique has
shown promising results in several studies, indicating that it can significantly improve the accuracy of cancer survival pre-
diction compared to models that only use a single data type.

15.2.3.8 Attention model for cancer survival prediction

Survival-based attention models are a type of attention model that is used in cancer survival prediction tasks. These models
utilize attention mechanisms to highlight relevant features from input data that are most informative for predicting sur-
vival outcomes. The attention weights are assigned to each feature based on their contribution to the survival outcome. By
using attention mechanisms, survival-based attention models can identify important features that may be missed by tradi-
tional models, thus potentially improving the accuracy of cancer survival prediction (Chen et al., 2019). One example
of a survival-based attention model is the DeepAttMISL model (Chen et al., 2019), which uses a neural network with a
self-attention mechanism to predict survival outcomes for breast cancer patients. The self-attention mechanism is used to
highlight important regions of the input data, such as regions of the tumor in the WSI.

15.3 Evaluation metrics for cancer survival prediction

Understanding how well predictive models perform in the context of cancer survival prediction requires us to use various
evaluation metrics. In Fig. 15.3, we discuss these metrics, including classification metrics, discriminative metrics, and
explainability metrics, allowing us to assess the models' effectiveness in real-life terms. Let's dive into Fig. 15.3 to these
metrics with detailed explanations and real-life examples to make them more relatable.
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FIGURE 15.3  Various evaluation metrics for cancer survival prediction.

15.3.1 Classification metrics

15.3.1.1 True positive

Imagine a medical test that detects a specific disease. In our context, true positive (TP) represents the number of patients
who genuinely have the disease, and the test correctly identifies them as positive cases. So, if the test correctly diagnoses

Mathews Correlation
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Area Under Receiver
Operating
Characteristics Curve
[ALC-ROC)

Local Interpretable Model
Agnastic Explanatien [LIME)

Shapley Additive Explanation

Incompletenass

Concordance [ndex
(C-Index)

o

90 out of 100 patients with cancer as positive, we have 90 TPs.

15.3.1.2  True negative

Continuing with our medical test analogy, true negative (TN) is the number of patients who don't have the disease, and the
test correctly identifies them as negative. If 80 out of 100 healthy individuals are accurately classified as negative, we have

80 TNs.

15.3.1.3  False positive

Now, think of a false positive (FP) as a false alarm. In medical terms, it's when the test wrongly identifies a healthy person
as having the disease. If, out of 100 healthy individuals, the test mistakenly identifies 20 as having the disease, we have 20

FPs.
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15.3.1.4 False negative

False negative (FN), in our analogy, is when the test misses a real case. It's when a sick person is incorrectly classified as
healthy. If, out of 100 patients with the disease, the test misses 10 and labels them as healthy, we have 10 FNs.

15.3.1.5 Accuracy
Accuracy is the measure of how well our medical test performs overall. It's like asking, “Out of all the tests conducted, how
many were correct?” If our test's results were correct for 170 out of 200 patients (90 TPs+80 TNs), the accuracy is 85%.

TP + TN
TP + FP + TN + FN

Accuracy = (15.1)

15.3.1.6 Sensitivity (recall or TP rate)

Sensitivity tells us how good our test is at catching the disease when it's really there. If, out of 100 patients with the disease,
our test correctly identifies 90, our sensitivity is 90%.

TP

SensitiVity = TP+—FN

(15.2)

15.3.1.7 Specificity (TN rate)

Specificity measures our test's ability to correctly identify those without the disease. If, out of 100 healthy individuals, our
test correctly identifies 80 as negative, our specificity is 80%.

TN

SpeCIﬁ01ty = TN—+FP

(15.3)

15.3.1.8 Precision (positive predictive value)

Precision focuses on how well our test correctly identifies positives. If, out of 110 individuals labeled as positive by the
test, 90 truly have the disease (TPs), our precision is 90/110, or roughly 81.8%.

TP

P .. __r
rec1sion TP + FP

(15.4)

15.3.1.9 Fl-score

The Fl-score combines precision and sensitivity into a single metric. It's like considering both the number of correctly
identified disease cases and how well the test avoids false alarms. In our medical test example, it's a way of striking a bal-
ance between not missing real cases and not falsely alarming healthy individuals. It provides a more comprehensive view
of our test's overall performance in cancer survival prediction.

2 * Precision * Recall
F1-S = 15.
core Precision + Recall (15.5)

15.3.2 Discriminative metrics

15.3.2.1 Matthews correlation coefficient

The Matthews correlation coefficient, often referred to as MCC, is a measure used in cancer survival prediction to evaluate
how well a predictive model can distinguish between survivors and nonsurvivors. It provides a score ranging from —1 to
+1, where +1 indicates a perfect prediction, 0 suggests no better than random, and —1 implies total disagreement between
prediction and reality.
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Example: Imagine we have a predictive model that aims to predict whether a cancer patient will survive or not after a
specific treatment. MCC takes into account all four scenarios: TPs (correctly predicted survivors), TNs (correctly predicted
nonsurvivors), FPs (predicted survivors who did not survive), and FNs (predicted nonsurvivors who survived).

If our MCC score is +0.8, it indicates that our model has strong predictive power, correctly classifying many survivors
and nonsurvivors. On the other hand, an MCC score of —0.2 would imply that the model's predictions are inconsistent with
actual outcomes.

MCC
(TP % TN) - (FP = FN) (15.6)

- /(TP + FP) (TP + FN) (TN + FP) (TN + FN)

15.3.2.2  Threat score (Critical Success Index)

The Threat score, also known as the Critical Success Index, assesses the accuracy of a predictive model in cancer survival
prediction. It measures how well the model predicts actual survival outcomes in cancer patients.

Example: Consider a scenario where our predictive model forecasts that 80 out of 100 cancer patients will survive
based on their medical data. Out of these 80 predicted survivors, 75 patients indeed survive (TPs), while 5 do not (FPs).
Additionally, out of the 20 predicted nonsurvivors, 18 patients did not survive (TNs), and 2 patients unexpectedly survived
(FNs).

Using the threat score formula, if we calculate a score of 0.85, it suggests that our model has a high degree of success
in accurately predicting survival outcomes. In this case, it aligns with the observed events closely.

TP
Threat =
eatScore TP PN+ FP (15.7)

15.3.2.3 Area under the receiver operating characteristic curve

The area under the receiver operating characteristic curve (AUC-ROC) is a metric that evaluates how well a predictive
model can differentiate between patients who survived and those who did not. It is valuable in cancer survival prediction
as it quantifies the model's ability to rank patients by their survival probabilities. It's often depicted as a curve on a graph,
with the AUC providing a numerical representation of the model's discriminatory power.

Example: Imagine you have a diagnostic test for a disease. If the test effectively distinguishes between healthy (nega-
tive) and diseased (positive) individuals and the AUC-ROC is close to 1, it means the test is excellent at classifying people
correctly. Conversely, if the AUC-ROC is closer to 0.5, it suggests that the test performs no better than random guessing.

15.3.2.4  Area under the precision-recall curve

The area under the precision-recall curve (AUC-PR) metric measures the trade-off between precision and recall for differ-
ent classification thresholds. It is particularly useful in cancer survival prediction when dealing with imbalanced datasets,
where one class (survivors) significantly outnumbers the other (nonsurvivors).

Example: Suppose we have a dataset with 90% survivors and 10% nonsurvivors. In such cases, precision-recall analy-
sis becomes crucial. A high AUC-PR value, say 0.85, indicates that our model can make precise predictions (few FPs)
while maintaining high recall (capturing most of the actual survivors).

15.3.2.5 Concordance index

The concordance index, often referred to as the C-Index, evaluates the predictive accuracy of a survival model by compar-
ing predicted survival times with observed survival times among cancer patients.

Example: In a real-world scenario, suppose our predictive model estimates the survival times for a group of cancer pa-
tients after treatment. The C-index, if calculated as 0.82, indicates that our model's predictions closely align with the actual
survival times for these patients, signifying its effectiveness in ranking them by survival probabilities.
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15.3.3 Explainability metrics

15.3.3.1 Local interpretable model-agnostic explanations

In the context of cancer survival prediction, local interpretable model-agnostic explanations (LIME) plays a crucial role
in offering precise insights into individual predictions. Instead of providing generic explanations, LIME focuses on the
specifics of each prediction, making it highly relevant for healthcare professionals to gain a deeper understanding of the
model's decision-making process and make the predictions more transparent and interpretable (Lundberg & Lee, 2017,
Ribeiro et al., 2016). It achieves this by creating a local interpretable model based on data points resembling the one be-
ing analyzed. By doing so, LIME highlights the significance of each feature for that specific prediction (Gramegna Alex,
2021).

Example: Think of LIME as a personalized interpreter for cancer survival predictions. Suppose we have a patient
whose data suggest a favorable prognosis. LIME dives into this specific case, highlighting which patient characteristics,
such as age, tumor size, or treatment type, influence the prediction the most. This patient-centered approach empowers
healthcare providers with valuable insights into why a particular prognosis was made for this specific individual.

15.3.3.2  Shapley additive explanations

Shapley additive explanations (SHAPs) offers a versatile framework for interpreting MI models, including those used in
cancer survival prediction. It employs Shapley values, derived from game theory, to quantify the contribution of each fea-
ture to a prediction (Lundberg & Lee, 2017; Shapley, 1953). This approach helps us grasp how different factors impact
predictions, making it particularly useful in understanding cancer survival prognosis (Gramegna Alex, 2021).

Example: Imagine our MI model as a complex puzzle. SHAP breaks down this puzzle, revealing the influence of each
piece (feature) on the final picture (prediction). For instance, it might show that a patient's family history of cancer has
a more significant impact on their survival prediction than other factors. This “feature breakdown” simplifies the model's
decision process, aiding both researchers and clinicians in comprehending the rationale behind predictions.

15.3.3.3  Faithfulness

Faithfulness metrics assess the accuracy of how an explanation method represents a model's decision-making process. It
checks if the explanation faithfully reflects how the model arrives at its predictions (Xie et al., 2023).

Example: In the context of cancer survival prediction, faithfulness metrics ensure that the explanations we derive ac-
curately reflect our model's decision-making process. We're talking about a connection between what the model says is
important and what it truly does. Imagine using a correlation coefficient, like the familiar Pearson coefficient, to ascertain
if the weight distribution in our explanation matches the model's behavior. A value close to 1 signifies harmony, while
values close to O raise a flag for inconsistencies (Oblizanov et al., 2023).

15.3.3.4 Monotonicity

Monotonicity metrics focus on whether changes in a feature consistently impact the model's prediction in the expected
direction. They validate if the explanation accurately captures the predictable relationship between features and predic-
tions. These metrics also evaluate the correctness of a sequence of features ranked by their increasing importance obtained
through explainable AI methods (Oblizanov et al., 2023). It is important to note that monotonicity metrics focus on as-
sessing the correctness of the distribution of weights between features, rather than evaluating the accuracy of individual
weight values (Nguyen et al., 2023).

15.3.3.5 Incompleteness

Incompleteness metrics measure the extent to which an explanation method falls short in explaining specific aspects of the
model's behavior. They assess whether the explanation overlooks relevant features or fails to capture essential patterns in
the model's decision process (Oblizanov et al., 2023).

Example: In cancer survival prediction, where every detail matters, incompleteness metrics help us understand if our
explanation method misses any crucial aspects of the model's behavior. It's a way of checking if we've captured every es-
sential pattern and relevant feature. It's like ensuring that the puzzle of our model's decision-making is fully assembled,
leaving no piece unturned.
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15.4 Challenges and limitations of using artificial intelligence techniques

Now we discuss some explanations of the challenges and limitations associated with the application of Al techniques in
predicting cancer survival, along with the ethical considerations they bring:

15.4.1 Data availability and quality (the data dilemma)

Navigating the world of Al for cancer survival prediction poses a daunting challenge—the availability and quality of data.
Despite the vast ocean of data available, obtaining data of high quality is an extremely difficult task. Often, data comes
with imperfections—missing pieces, inconsistencies, and sometimes, hidden biases. Moreover, data from different sources
might not speak the same language, making it challenging to combine and decipher effectively (Kelly et al., 2019).

15.4.2 Interpretation and explainability (the artificial intelligence enigma)

Another significant challenge is the interpretation and explainability of Al models. As Al models can be highly complex,
this makes it tough to grasp how they make their predictions (Samek et al., 2017). This lack of transparency can be
problematic for healthcare professionals who need to explain to patients why a particular treatment is being recommended
(Holzinger et al., 2017).

15.4.3 Ethical considerations (guardian of privacy)

Think of Al as a powerful tool, capable of great good or potential harm. One of the most important concerns is privacy.
Imagine you're sharing your deepest secrets with a confidant—you expect them to be kept safe. In healthcare, if the patient
data falls into the wrong hands, it could lead to serious breaches of confidentiality. Al's hunger for data must be balanced
with the need to protect individual privacy. Moreover, Al has the potential to propagate existing biases and inequalities in
healthcare (Naik et al., 2022). It's like trying to create a fair race when some runners have a head start. Ensuring that Al
benefits all, regardless of background or circumstance, is a moral obligation we must fulfill.

15.5 Conclusion and future direction

Al techniques hold significant potential in the field of cancer survival prediction. With the availability of massive-scale
datasets and advancements in computational resources, Al models have evolved to be more accurate and robust. However,
several challenges and constraints need to be addressed, related to data accessibility and quality, the interpretability of
Al-driven models and explainability, and ethical considerations. Despite these challenges, there are several key takeaways
and emerging trends in the field. Firstly, the use of multimodal data and the integration of diverse data sources are be-
coming increasingly popular and offer a holistic perspective. Secondly, the development of graph representation learning
models is an exciting area with significant potential for improving cancer survival prediction. Lastly, the integration of Al
models with clinical decision support systems is an important area for improving patient outcomes.

In terms of future directions, there is a need for more standardized and transparent evaluation metrics to compare the
performance of various models. Additionally, there is a need for more studies that focus on the generalizability of AI mod-
els across diverse populations and clinical settings are essential. Finally, there is a need for more interdisciplinary collabo-
rations between computer scientists, clinicians, and other stakeholders is essential to ensure that Al models are developed
with a patient-centered approach and ethical considerations in mind.
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