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Abstract
Purpose: Cancer recurrence occurs in 15–50% of head and neck cancer (HNC) patients despite advanced treatment
strategies suggesting the need for more accurate risk predictors. Existing clinical parameters, radiological staging and tumour
stage-based prognostication provide limited predictive accuracy for individual patients. Cancer Radiomics, which refers to
the process of converting radiological images into quantifiable descriptions of the tumour has been actively studied to evaluate
for imaging biomarkers. However, this analysis faces the classic 𝑝 ≫ 𝑛 problem, where hundreds of imaging biomarkers
must be analyzed in small patient cohorts, leading to feature instability and selection bias. This study systematically compares
feature selection methods across multiple classifier families for HNC locoregional recurrence prediction. The aim is to
identify stable, generalizable signatures by integrating radiomics and clinical features.

Methods: We prospectively recruited HNC patients treated with chemoradiation in our institution between 2020–2024.
103 Radiomics features were extracted from this tumour volume using Pyradiomics, including first-order intensity, 3D
shape and texture families. Eight clinical variables were also collected: age, location of tumour within the head and neck
region, TNM/AJCC staging, and HPV status. We compared models using radiomic features alone versus radiomics features
combined with clinical features. Five machine learning classifiers (Logistic Regression, Naive Bayes, SVM, Decision
Tree, Random Forest) were tested with seven feature selection methods including LASSO, SelectKBest and metaheuristic
algorithms (Particle Swarm Optimization, Whale Optimization, Grey Wolf Optimizer, Genetic Algorithm, Simulated
Annealing). Models were trained and evaluated under stratified 5-fold stratified cross-validation and independent test splits,
with area under the receiver operating curve (AUC) as the primary performance evaluation metric.

Results: We recruited 367 HNC patients of which 163 HNC patients (55 with locoregional recurrence, 108 disease-free)
were included for this study. The optimal model was Logistic Regression with Grey Wolf Optimizer selection using combined
features, achieving test AUC 0.81 [0.62, 0.95]. The 10-feature signature included 4 clinical variables (age, AJCC stage,
T-stage, location) and 6 radiomics features capturing tumor shape and texture heterogeneity. Clinical variable integration
dramatically improved SVM performance from AUC ∼0.35 to ∼0.78.

Conclusion: Simple linear models with carefully selected radiomics + clinical features outperform complex algorithms in
high-dimensional, small-sample scenarios. External validation across multiple institutions is the critical next step for clinical
translation.
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1 Introduction
Head and neck cancer (HNC) is a major global health problem, with approximately 890,000 new cases and 450,000 deaths
reported annually worldwide, making it the seventh most common cancer globally [1, 2]. Despite improvements in radiation
delivery and multimodality treatment, locoregional recurrence rates remain high, with 50–60% of patients with advanced
disease experiencing recurrence within two years of treatment, and an overall locoregional recurrence rate of approximately
14% [3, 4]. These recurrences severely affect both patient survival and quality of life, with median survival of only 10–15
months for recurrent/metastatic disease and major difficulties in essential functions including speech, swallowing, eating, and
social interaction [5, 6, 7]. The ability to predict recurrence risk would allow for personalized surveillance schedules, earlier
interventions, and better allocation of resources for patients who would benefit most from intensive monitoring.

Current prognostic methods rely mainly on population-based clinical and pathological parameters including TNM staging,
tumor site, and patient performance status [8, 9, 10]. While these factors provide general risk stratification, they are not
precise enough for individual patient risk prediction. This limitation comes from their inability to account for the biological
heterogeneity that drives treatment response and disease progression. As a result, clinicians lack reliable tools to identify
which patients have aggressive disease requiring closer surveillance versus those who can safely undergo standard follow-up.



Cancer radiomics has emerged as a promising approach to address this gap by extracting quantitative imaging features
that describe tumor characteristics beyond what is visible to the human eye [11, 12, 13]. By treating medical images as
high-dimensional data, radiomics can detect subtle patterns in tumor shape, intensity distribution, and texture that may
reflect biological processes such as hypoxia, cellular heterogeneity, and microenvironmental characteristics [11, 14]. When
combined with clinical parameters, these imaging biomarkers may provide more personalized risk assessment than traditional
staging systems alone.

Several studies have shown the potential of radiomic signatures for predicting locoregional recurrence in HNC [15, 16, 17, 18].
However, important gaps limit their clinical use. First, existing models have been mostly developed in Western populations and
show poor performance in South Asian cohorts, which have different tumor subtype distributions and disease characteristics
[19]. Second, most published radiomics research uses retrospective data collected under varying imaging protocols,
introducing technical variability that undermines model reproducibility and external validity [19, 20]. These limitations
point to the need for prospective studies with standardized protocols that address population-specific disease patterns.

Beyond data collection issues, radiomics research faces basic methodological problems. Extracting hundreds of imaging
features from relatively small patient cohorts creates a classic high-dimensional problem (𝑝 ≫ 𝑛), where the risk of overfitting
and feature instability is high [20, 21, 22]. Models become very sensitive to feature selection methods and classifier choice,
with different analytical approaches often giving contradictory results on the same datasets [21, 23]. Standard feature
selection methods often produce unstable signatures that change significantly across data resamples, while complex machine
learning algorithms may show impressive training performance but fail on independent test sets [24]. The key question is:
which small, stable subset of radiomic and clinical features contains real prognostic information that works in unseen patients
across different clinical settings?

This study addresses both the data quality and methodological challenges in radiomics-based recurrence prediction for
HNC. We built a prospective, protocol-driven cohort at a major tertiary cancer center in India, ensuring standardized
CT imaging and systematic clinical follow-up for recurrence assessment. To address the feature selection challenge, we
systematically compared conventional methods (LASSO, SelectKBest) with five metaheuristic optimization algorithms
(Particle Swarm Optimization, Whale Optimization, Grey Wolf Optimizer, Genetic Algorithm, Simulated Annealing)
[23, 25, 26] across multiple classifier types. We also introduce a hybrid approach that combines Bootstrap-LASSO stability
pre-filtering with metaheuristic subset optimization to find robust feature signatures [23, 24]. Through evaluation of 35
different machine learning pipelines across four experimental settings, we identify the best modeling strategies that balance
predictive performance with clinical interpretability.

Contributions:

• C1: Establishment of a large prospective protocol-driven dataset of head and neck cancer patients (2020–2024) under
a standardized imaging protocol and follow-up for recurrence prediction and addressing the need for high-quality data
representing South Asian tumor subtype distributions.

• C2: Systematic comparison of 35 machine learning pipelines across four experimental settings, showing that
simple linear models with carefully selected features outperform complex ensemble methods in high-dimensional,
small-sample scenarios.

• C3: Identification of clinically interpretable radiomic-clinical signatures linked to recurrence risk, showing that sparse
feature sets combining established clinical factors with tumor heterogeneity biomarkers achieve good generalization
performance and support individualized follow-up strategies.

2 Related Work
Radiomics has emerged as a powerful approach for prognostic modeling in head and neck cancer, with consistent findings
demonstrating the superior performance of combined clinical-radiomic models. Gangil et al. reported that clinico-radiomic
models achieved 72% test accuracy for locoregional recurrence prediction in 311 HNC patients, markedly exceeding the
performance of clinical-only or radiomics-only approaches. Their systematic comparison of Random Forest, SVM, and
XGBoost found that SVM performed best for clinico-radiomic feature sets [15]. Building on this integration approach,
Bruixola et al. demonstrated that combining CT-derived radiomic features with TNM stage and clinical factors significantly
outperformed TNM-8 staging alone for progression risk stratification in locally advanced HNC [16].

Extending beyond single-modality CT imaging, Hu et al. explored multi-modal approaches using paired PET/CT scans
combined with clinical variables, achieving an average AUC of 0.82 for HNSCC recurrence prediction. Their work also
incorporated data augmentation strategies, demonstrating improved model robustness through Gaussian noise upsampling
that enhanced both sensitivity and specificity [17]. Advanced optimization techniques have also been developed, with
Zhang et al. proposing multi-objective approaches that simultaneously optimize sensitivity, specificity, and feature sparsity,
addressing the challenge of balancing predictive performance with model interpretability [18].
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Despite promising single-institution results, model generalizability remains a critical challenge in radiomics research.
Varghese et al. directly addressed this limitation through a multi-center analysis of 562 patients from four institutions for
2-year locoregional recurrence prediction. Their systematic evaluation compared feature selection methods (LASSO vs.
univariate filtering), classifiers (logistic regression vs. SVM), and batch effect correction techniques, revealing substantial
performance variability with AUC values ranging from 0.56 to 0.68 depending on pipeline configuration and data pooling
strategies. While combining multi-institutional data improved SVM performance to approximately 0.68, significant variability
persisted across different methodological choices, underscoring the critical need for standardized imaging protocols and
robust feature selection methods for successful clinical translation [27].

These studies collectively demonstrate both the promise and limitations of current radiomics approaches for HNC recurrence
prediction. While clinical-radiomic integration consistently outperforms single-modality approaches, the substantial
inter-institutional variability underscores the critical importance of robust feature selection methods and standardized imaging
protocols for successful clinical translation.

3 Methods
3.1 Patient Cohort and Study Design
A prospective study was conducted between 2020 and 2024 at Christian Medical College Vellore under a standardized
imaging and clinical protocol designed to minimize technical variability. Inclusion criteria comprised patients aged 18–70
years with Eastern Cooperative Oncology Group (ECOG) performance status ≤2, locally advanced disease (stage >T2 and/or
N1+), high-quality baseline contrast-enhanced CT imaging acquired prior to treatment, and complete one-year clinical
follow-up with documented locoregional recurrence status [28]. Patients with prior head and neck malignancy, distant
metastatic disease, previous radiotherapy exposure, imaging artifacts compromising tumor segmentation, missing primary
gross tumor volume (GTVp) delineation, absence of planning CT scans, and incomplete treatment courses were excluded.
The study protocol received institutional review board approval, and all patient data were anonymized prior to analysis.
Figure 1 illustrates the patient selection process and final dataset composition.

Figure 1: Patient selection and dataset splitting flowchart

3.2 Image Acquisition and Preprocessing
All CT images were contrast-enhanced and acquired using institutional scanners (Siemens Biograph 6, SOMATOM Definition
AS, GE Discovery CT750 HD) with an energy range of 100.0–130.0 kVp, an exposure range of 5.0–350.0 mAs, and 512×512
matrix with slice thickness of 2.5–3.0 mm. In-plane resolution ranged from 0.78125× 0.78125 mm2 to 1.367188× 1.367188
mm2. Following image acquisition, gross tumour volumes were delineated by radiation oncologists. The tumor volumes as
visible on the planning CT were manually delineated following standard HNC contouring guidelines and labelled as the
gross tumour volume (GTV). The tumour outlines (masks) were exported in DICOM RTSTRUCT format.
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3.3 Feature Extraction and Integration
Image preprocessing was performed prior to radiomic feature extraction to ensure standardization across different scanners.
All preprocessing steps followed the Image Biomarker Standardization Initiative (IBSI) guidelines [29]. The CT images and
their masks were resampled to 1 × 1 × 1 mm3 isotropic voxels using B-spline interpolation to standardize spatial resolution
across different scanners. Intensity discretization was performed using a fixed bin width of 25 Hounsfield Units to optimize
texture feature stability while maintaining sensitivity to clinically relevant tissue variations.

Following preprocessing, radiomic features were extracted using PyRadiomics v3.1.0 [30], yielding 103 features per GTV:
first-order intensity statistics (18 features) capturing distribution properties including mean, variance, skewness, and kurtosis;
shape descriptors (14 features) quantifying morphological properties such as volume, surface area, sphericity, and maximum
2D/3D diameters; and texture features (71 features) derived from grey-level co-occurrence matrices (GLCM, 24 features),
run-length matrices (GLRLM, 16 features), size-zone matrices (GLSZM, 16 features), dependence matrices (GLDM, 14
features), and neighbouring grey-tone difference matrices (NGTDM, 5 features).

In addition to radiomics features, clinical variables were incorporated into the analysis. The clinical variables were
transformed from discrete to numerical format: age, weight, primary tumor location, T/N/M staging, AJCC stage (7th ed),
and HPV/p16 status. Missing values were handled using median replacement for continuous variables and conservative
assumptions for staging parameters. This resulted in a total of 8 clinical features, which could be combined with the 103
radiomics features for integrated analysis.

3.4 Feature Selection Strategies
To address the high-dimensional challenge (𝑝 ≫ 𝑛), seven feature selection methods were implemented to reduce
dimensionality and mitigate overfitting. All feature selection and hyperparameter tuning were performed exclusively within
the training set using stratified 5-fold cross-validation to prevent information leakage. Three feature selection approaches
were evaluated: direct, metaheuristic, and hybrid. Direct approaches apply a single feature selection method to identify
optimal feature subsets in one step. Metaheuristic approaches use population-based optimization algorithms to directly
search for optimal feature combinations. Hybrid approaches combine multiple methods sequentially, using an initial stability
selection method to pre-filter features before applying a metaheuristic algorithm for final feature subset optimization.

Direct Selection Approach: A single-feature selection method was applied within each training fold to identify the optimal
feature subsets. Bootstrap-LASSO implemented stability selection through 1,000 stratified bootstrap resamples per fold,
applying L1-penalized logistic regression across a log-spaced range of regularization parameter 𝐶 to identify features with
consistent selection patterns. SelectKBest employed univariate filtering using ANOVA F-statistics, evaluating various 𝑘

values (5 to 20) to select the number of top-ranked features yielding optimal inner-CV ROC-AUC performance.

Metaheuristic Selection Approach: Five population-based algorithms conducted direct feature subset optimization, each
enforcing exactly 6 features to balance model complexity with interpretability. Particle Swarm Optimization utilizes swarm
intelligence with particles navigating the search space based on personal and global best solutions, balancing population
size and iterations for the exploration-exploitation trade-off. Whale Optimization Algorithm mimicked humpback whales’
bubble-net hunting behavior, alternating between encircling prey and spiral motion phases following original WOA parameter
settings. Grey Wolf Optimizer simulated wolf pack social hierarchy with alpha/beta/delta leadership structure, employing
standard update equations without additional hyperparameters. Genetic Algorithm implemented evolutionary search using
binary chromosome encoding, with crossover rates (∼0.8) and mutation rates (∼0.02) optimized for feature selection tasks.
Simulated Annealing applied probabilistic optimization inspired by metallurgical annealing processes, utilizing cooling
schedules designed to balance global exploration with convergence stability.

Hybrid Selection Approach: This two-stage process first applied Bootstrap-LASSO stability selection to narrow the
feature pool to 10–20 stable candidates using the frequency-threshold procedure. Subsequently, metaheuristic algorithms
(PSO/WOA/GWO/GA/SA) refined this reduced feature set to identify optimal 6-feature subsets, using mean inner-CV
ROC-AUC as the fitness criterion. Table 1 provides comprehensive parameter configurations for all feature selection methods.

3.5 Model Building and Evaluation
To evaluate prediction performance, four modeling configurations were created by combining two factors. A modeling
configuration refers to a specific combination of feature input type and feature selection strategy. The two feature input types
were: radiomics-only (103 features) and combined radiomics-clinical (111 features). The two feature selection strategies
were: direct selection (applying Bootstrap-LASSO, SelectKBest, or metaheuristic algorithms in a single step) and hybrid
selection (two-stage Bootstrap-LASSO followed by metaheuristic refinement). This resulted in four configurations: (i)
radiomic features with direct selection; (ii) radiomic + clinical features with direct selection; (iii) radiomic features with
hybrid selection; and (iv) radiomic + clinical features with hybrid selection.

Five classifiers were evaluated with comprehensive hyperparameter optimization via GridSearchCV using 5-fold stratified
cross-validation. All random aspects (e.g., data shuffling, model initialization) were controlled with fixed random seeds (e.g.,
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Table 1: Feature Selection Methods and Parameter Configurations

Method Key Parameters Rationale & Implementation Details

Bootstrap-LASSO 1,000 bootstrap samples
Frequency threshold: 70%
Adaptive threshold: 0.7→0.2

High sample size ensures stability; frequency threshold balances stability vs
sensitivity; adaptive threshold maintains 10-20 features preventing over/under-
selection

SelectKBest (ANOVA) F-test ranking
k optimization: 5-20
Cross-validation

Univariate statistical ranking with data-driven k selection; no classifier bias
in selection process (purely statistical approach)

Particle Swarm Optimiza-
tion

20 particles, 50 iterations
Inertia weight: 0.7
c1=1.4, c2=1.4

Balances exploration vs computational efficiency; moderate momentum
preservation; balanced personal vs global learning; sigmoid transfer function
for binary decisions

Whale Optimization Al-
gorithm

20 whales, 50 iterations
Spiral probability: 0.5
Shape parameter: 1.0

Adequate population for solution diversity; equal exploitation/exploration
balance; standard spiral tightness; alternates between encircling prey ( |𝐴| < 1)
and random search ( |𝐴| ≥ 1)

Grey Wolf Optimizer 12 wolves, 20 iterations
Hierarchical structure
Parameter a: 2→0

Smaller population with faster convergence; alpha/beta/delta leadership mim-
ics natural pack behavior; linear parameter reduction decreases exploration
over time

Genetic Algorithm Population: 40, Gen: 60
Crossover rate: 0.8
Mutation rate: 0.02
Elitism: 10%

Sufficient genetic diversity; tournament selection (size=3) provides moderate
selection pressure; high recombination with low disruption; preserves best
solutions

Simulated Annealing 1,000 iterations
Initial temp: 100
Cooling rate: 0.95

Thorough search space exploration; high initial acceptance probability;
gradual temperature reduction; exp(Δf/T) allows escaping local optima early
in search

random_state=42) to ensure reproducibility across all experiments. The final chosen hyperparameters for each model
correspond to those yielding the best cross-validated AUC in the training data. Table 2 details the complete hyperparameter
search spaces for each classifier.

Classifier performance was evaluated using ROC-AUC with 95% confidence intervals (CI) computed via 1000 bootstrap
resamples of the test set. Models were trained using 5-fold stratified cross-validation on the training cohort (𝑛 = 130), with
optimal hyperparameters selected based on cross-validation performance. Test set results are reported as AUC [95% CI] to
assess model generalization capability on unseen data.

Table 2: Hyperparameter Configurations for Machine Learning Classifiers

Classifier Parameters and Search Values

Logistic Regression C: [1e-3, 3e-3, 1e-2, 3e-2, 0.1, 0.3, 1, 3, 10]; penalty: [’l1’, ’l2’]; solver: [’liblinear’];
class_weight: [None, ’balanced’]; max_iter: [1000]

Gaussian Naive Bayes No tunable parameters

Support Vector Machine C: [1e-3, 1e-2, 0.1, 1, 10]; kernel: [’linear’, ’rbf’]; gamma (RBF only): [’scale’, ’auto’,
1e-3, 1e-2, 1e-1]; probability: [True]; class_weight: [None, ’balanced’]

Decision Tree criterion: [’gini’, ’entropy’]; max_depth: [2, 3, 4, 5, 7]; min_samples_split: [5, 10, 15];
min_samples_leaf: [2, 4, 6]; max_features: [’sqrt’, ’log2’, None]; class_weight: [None,
’balanced’]

Random Forest n_estimators: [100, 200, 400]; max_depth: [3, 5, 7, 10]; min_samples_split: [5, 10];
min_samples_leaf: [2, 4]; max_features: [’sqrt’, ’log2’]; bootstrap: [True]; class_weight:
[None, ’balanced’, ’balanced_subsample’]

4 Results
We analyzed 163 prospectively recruited HNC patients (55 with LRR and 108 disease-free) treated with chemoradiation
between 2020 and 2024. Most patients were male (143, 88%) with a median age of 62 years (range 22–85 years). Most
patients had a history of tobacco use (93 patients, 57%), while 73 patients (45%) were non-smokers. Chewable tobacco use
was reported in 60 patients (37%).

Most patients had primary tumor location as larynx (62 patients, 38%), followed by the hypopharynx (32 patients, 20%) and
the nasopharynx (25 patients, 15%). According to TNM staging, T3 tumors were most common (63 patients, 39%), followed
by T4a (36 patients, 22%) and T2 (36 patients, 22%). Nodal involvement was present in 98 patients (60%), while 65 patients
(40%) had N0 disease. Overall, AJCC staging showed Stage III disease in 53 patients (33%), Stage IVA in 41 patients (25%),
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and Stage IVB in 32 patients (20%). HPV/p16 status was available for 58 patients, with 10 (17%) testing positive. Patients
were randomly divided into training (130 patients, 80%) and independent test (33 patients, 20%) sets.

Using radiomic features exclusively (103 features), performance varied across classifiers and feature selection methods
(Table 3). Decision Tree with SelectKBest achieved the highest test AUC of 0.73 [0.53, 0.88]. SVM performance was highly
variable, ranging from 0.32 [0.14, 0.54] with Grey Wolf Optimizer to 0.64 [0.39, 0.85] with SelectKBest.

Table 3: Performance of Machine Learning Models Using Radiomic Features Only

Classifier LASSO SelectKBest PSO WOA GWO GA SA

Logistic Regression 0.64 [0.42, 0.83] 0.65 [0.40, 0.86] 0.65 [0.41, 0.85] 0.64 [0.41, 0.85] 0.69 [0.47, 0.88] 0.62 [0.40, 0.83] 0.65 [0.41, 0.87]

Naive Bayes 0.68 [0.47, 0.86] 0.65 [0.40, 0.87] 0.69 [0.48, 0.88] 0.66 [0.47, 0.84] 0.71 [0.50, 0.89] 0.67 [0.47, 0.84] 0.65 [0.43, 0.83]

SVM 0.36 [0.17, 0.59] 0.64 [0.39, 0.85] 0.35 [0.15, 0.60] 0.36 [0.15, 0.60] 0.32 [0.14, 0.54] 0.63 [0.39, 0.85] 0.36 [0.15, 0.60]

Decision Tree 0.68 [0.48, 0.85] 0.73 [0.53, 0.88] 0.63 [0.42, 0.82] 0.55 [0.35, 0.73] 0.66 [0.48, 0.83] 0.65 [0.46, 0.82] 0.53 [0.30, 0.76]

Random Forest 0.67 [0.45, 0.84] 0.63 [0.40, 0.84] 0.66 [0.44, 0.84] 0.62 [0.41, 0.80] 0.68 [0.48, 0.86] 0.62 [0.41, 0.80] 0.65 [0.42, 0.84]

Adding 8 clinical variables to the radiomic feature set (111 total features) altered performance patterns across classifiers
(Table 4). Logistic Regression with Grey Wolf Optimizer achieved the highest test AUC of 0.81 [0.62, 0.95]. SVM
performance continued to remain highly variable, ranging from 0.34 [0.28, 0.56] with Whale Optimization Algorithm to 0.79
[0.62, 0.93] with Grey Wolf Optimizer.

Table 4: Performance of Machine Learning Models Using Radiomics and Clinical Features

Classifier LASSO SelectKBest PSO WOA GWO GA SA

Logistic Regression 0.78 [0.58, 0.94] 0.66 [0.42, 0.88] 0.74 [0.52, 0.92] 0.62 [0.49, 0.83] 0.81 [0.62, 0.95] 0.75 [0.54, 0.92] 0.74 [0.52, 0.92]

Naive Bayes 0.71 [0.50, 0.91] 0.63 [0.38, 0.86] 0.67 [0.43, 0.89] 0.68 [0.57, 0.83] 0.79 [0.60, 0.93] 0.75 [0.54, 0.91] 0.73 [0.52, 0.90]

SVM 0.78 [0.57, 0.94] 0.35 [0.13, 0.58] 0.72 [0.50, 0.90] 0.34 [0.28, 0.56] 0.79 [0.62, 0.93] 0.74 [0.52, 0.93] 0.74 [0.53, 0.91]

Decision Tree 0.59 [0.38, 0.76] 0.68 [0.46, 0.87] 0.45 [0.25, 0.64] 0.58 [0.50, 0.70] 0.60 [0.40, 0.80] 0.62 [0.41, 0.80] 0.70 [0.49, 0.88]

Random Forest 0.68 [0.45, 0.88] 0.64 [0.40, 0.85] 0.67 [0.43, 0.86] 0.64 [0.57, 0.71] 0.73 [0.55, 0.89] 0.74 [0.53, 0.92] 0.72 [0.51, 0.89]

Bootstrap-LASSO combined with metaheuristic optimization produced different performance patterns compared to direct
selection (Tables 5–6). For radiomic-only features, the highest test AUC was 0.72 [0.51, 0.89] achieved by Naive Bayes with
Grey Wolf Optimizer and Simulated Annealing. For combined features, the highest performance was 0.77 [0.58, 0.92] and
0.77 [0.57, 0.93] achieved by Naive Bayes with Whale Optimization Algorithm and Grey Wolf Optimizer respectively.

Table 5: Performance of Machine Learning Models Using Hybrid Feature Selection with Radiomic Features Only

Classifier PSO WOA GWO GA SA

Logistic Regression 0.66 [0.45, 0.86] 0.65 [0.43, 0.85] 0.66 [0.44, 0.86] 0.65 [0.41, 0.85] 0.68 [0.45, 0.87]

Naive Bayes 0.71 [0.50, 0.89] 0.71 [0.50, 0.88] 0.72 [0.51, 0.89] 0.68 [0.46, 0.87] 0.72 [0.51, 0.88]

SVM 0.34 [0.15, 0.56] 0.35 [0.15, 0.57] 0.34 [0.15, 0.55] 0.36 [0.15, 0.59] 0.32 [0.15, 0.55]

Decision Tree 0.64 [0.44, 0.81] 0.67 [0.46, 0.84] 0.53 [0.34, 0.71] 0.59 [0.37, 0.78] 0.62 [0.43, 0.79]

Random Forest 0.72 [0.54, 0.88] 0.70 [0.50, 0.88] 0.69 [0.47, 0.87] 0.67 [0.45, 0.85] 0.69 [0.48, 0.87]

Across all experimental configurations, Logistic Regression with Grey Wolf Optimizer feature selection using combined
radiomic and clinical features achieved the highest test performance (AUC 0.81 [0.62, 0.95]). This model selected a
10-feature signature comprising 4 clinical variables (Age, AJCC_Stage, T_Stage, Location) and 6 radiomic features
(Maximum2DDiameterSlice, MinorAxisLength, LargeDependenceEmphasis, RunLengthNonUniformityNormalized, Idm,
Imc1).

5 Discussion
This study systematically evaluated machine learning pipelines for locoregional recurrence prediction in head and neck
cancer using prospectively collected data. Our most salient finding is that a simple 10-feature clinical-radiomic signature
using Logistic Regression with Grey Wolf Optimizer achieved the best held-out performance (test AUC 0.81), outperforming
complex ensemble methods and hybrid feature selection approaches.

Our finding that combined clinical-radiomic models outperform radiomics-alone approaches aligns with other reported
findings. Gangil et al. reported that clinico-radiomic models achieved 72% accuracy for LRR prediction in 311 HNC patients,
markedly exceeding single-modality approaches [15]. Similarly, Bruixola et al. demonstrated that combining CT-derived

6



Table 6: Performance of Machine Learning Models Using Hybrid Feature Selection with Radiomics and Clinical Features

Classifier PSO WOA GWO GA SA

Logistic Regression 0.75 [0.54, 0.92] 0.70 [0.47, 0.88] 0.75 [0.53, 0.93] 0.74 [0.53, 0.91] 0.74 [0.51, 0.93]

Naive Bayes 0.71 [0.49, 0.90] 0.77 [0.58, 0.92] 0.77 [0.57, 0.93] 0.69 [0.46, 0.89] 0.74 [0.52, 0.91]

SVM 0.68 [0.45, 0.88] 0.74 [0.53, 0.90] 0.69 [0.46, 0.90] 0.69 [0.45, 0.89] 0.67 [0.42, 0.88]

Decision Tree 0.68 [0.44, 0.90] 0.61 [0.38, 0.80] 0.71 [0.52, 0.87] 0.63 [0.42, 0.83] 0.54 [0.32, 0.75]

Random Forest 0.68 [0.44, 0.88] 0.75 [0.55, 0.92] 0.72 [0.49, 0.91] 0.69 [0.45, 0.90] 0.75 [0.53, 0.94]

radiomic features with TNM staging significantly outperformed TNM-8 staging alone for progression risk stratification
[16]. Our optimal performance (test AUC 0.81) is also in the range reported by prior CT-radiomics studies focused on LRR
after chemoradiotherapy (typically ∼0.7–0.8), such as Keek et al., who developed a (peri)tumoral CT radiomic signature
for LRR/DM risk stratification [31]. However, our results reveal important nuances not emphasized in prior work. While
Gangil et al. found SVM performed best for combined features [15], our data show SVM response to clinical integration is
highly method dependent. Some feature selection combinations achieved strong performance (LASSO: 0.78, GWO: 0.79),
while others remained poor (SelectKBest: 0.35, WOA: 0.34), indicating that SVM’s reported superiority may reflect specific
methodological choices rather than consistent algorithmic advantages. In contrast, Logistic Regression demonstrated stable
improvement across all seven feature selection methods (range 0.62–0.81), suggesting greater methodological robustness for
clinical deployment.

Systematic overfitting was observed in Random Forest and Decision Tree models, despite ensemble design, highlighting
fundamental challenges in high-dimensional, small-sample radiomics. Varghese et al.’s multi-institutional study similarly
found substantial performance variability (AUC 0.56–0.68) depending on pipeline complexity, supporting our observation that
sophisticated methods don’t guarantee superior performance [27]. Their finding that even multi-center data pooling achieved
only modest improvements (SVM AUC ∼0.68) underscores the persistent challenge of model generalization in radiomics
research. Our observation that simple linear models outperformed complex ensembles contrasts with some radiomics literature
but aligns with emerging evidence about small-sample limitations [24]. The persistent overfitting we documented—with
Random Forest achieving training AUC 0.90–0.98 but test performance dropping to 0.62–0.74—demonstrates that theoretical
overfitting resistance fails in extreme high-dimensional scenarios [24]. This pattern remained consistent across all feature
selection methods and configurations, indicating a fundamental rather than methodological limitation. High-dimensional
data with small sample sizes is particularly prone to biased machine learning performance estimates, with models learning
noise rather than underlying patterns [24].

Although two-stage selection (Bootstrap-LASSO prefilter → metaheuristic subset search) is appealing for stability, it did not
outperform direct selection here (best hybrid test AUC 0.77 vs best direct 0.81). Most studies assume sophisticated feature
selection improves results, but our systematic comparison suggests this assumption requires empirical validation. Zhang et
al.’s multi-objective optimization achieved good performance but required complex computational frameworks [18], whereas
our simpler Grey Wolf Optimizer approach achieved comparable results with greater interpretability. The 4-point AUC
difference between hybrid and direct methods, while seemingly modest, represents meaningful clinical discrimination. This
finding suggests that two-stage filtering processes, while conceptually appealing for stability, may inadvertently remove
informative features during pre-filtering stages. Future radiomics methodology research should empirically validate rather
than assume the benefits of increased selection complexity.

The clinical variables in our optimal signature (Age, AJCC_Stage, T_Stage, Location) are well-established prognostic factors
extensively validated in HNC literature [8, 9, 10]. Age has been consistently demonstrated as an independent prognostic
factor with hazard ratios of approximately 1.04 per year [10], while AJCC staging system incorporates tumor and nodal
characteristics that fundamentally determine treatment approach and prognosis [8, 9]. The selected radiomic features align
with biological mechanisms of treatment resistance. Shape features (Maximum2DDiameterSlice, MinorAxisLength) capture
tumor geometry, consistent with evidence that larger, irregular tumors have worse outcomes [32, 33]. Texture features
(LargeDependenceEmphasis, RunLengthNonUniformityNormalized, Idm, Imc1) quantify intratumoral heterogeneity, which
correlates with hypoxia, necrosis, and cellular density variations—factors known to influence radiosensitivity [33, 34, 35].
Radiomic texture features measure the spatial distribution relationship of voxel intensities and provide quantitative assessment
of tumor heterogeneity that reflects underlying biological processes including metabolic activity, oxygenation levels, and
vascularization [34, 35]. Our sparse 6-feature radiomic component contrasts with studies using larger feature sets, which may
contribute to our model’s superior generalization. The 4:6 clinical-to-radiomic ratio suggests imaging biomarkers provide
substantial but not overwhelming prognostic value relative to established clinical parameters, supporting the complementary
rather than replacement role of radiomics in clinical assessment.

Our single-institution performance (test AUC 0.81) exceeds the multi-institutional results reported by Varghese et al.
(0.56–0.68) [27], but this comparison must be interpreted cautiously. Single-institution studies benefit from protocol
homogeneity but risk overfitting to local characteristics, while multi-center studies better represent real-world heterogeneity
despite reduced performance. The wide confidence intervals in our optimal model [0.62, 0.95] reflect this uncertainty, with
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the upper bound potentially representing overfitted local patterns rather than generalizable performance. Their systematic
evaluation of batch effect correction and feature harmonization techniques [27] highlights challenges we did not address in
our single-institution design. Their finding that model AUCs varied substantially with harmonization approaches suggests
our results may not directly translate to external institutions without similar preprocessing considerations.

Several critical limitations must be acknowledged. Our small test set (𝑛 = 33) produces wide confidence intervals [0.62,
0.95] that substantially exceed the uncertainty reported in larger studies like Varghese et al.’s 562-patient cohort [27].
This uncertainty indicates our model’s true performance could range from marginally useful to highly discriminative,
emphasizing the essential need for external validation before clinical consideration. The single-institution design limits
generalizability across different imaging protocols, scanner vendors, and patient populations. Multi-institutional validation
studies incorporating standardized protocols and harmonized feature extraction pipelines are required to establish broader
applicability and assess model robustness across diverse clinical settings. The prospective data collection under standardized
protocols is a strength, but retrospective analysis of this prospectively collected data limits assessment of real-world clinical
utility and decision-making impact.

6 Conclusion
This study demonstrates that combined radiomic-clinical models significantly outperform radiomic-only approaches for
HNC locoregional recurrence prediction. Key contributions include: (1) systematic evaluation showing clinical variables
are essential for effective radiomic model performance; (2) demonstration that simple linear models outperform complex
ensembles in high-dimensional, small-sample scenarios; (3) evidence that sophisticated hybrid feature selection provides no
advantage over direct methods; and (4) identification of an optimal feature signature combining clinical parameters with
tumor morphology and texture features using routine imaging and clinical data. Future work requires external validation with
multi-institutional datasets, prospective clinical trials to assess real-world impact, and investigation of additional imaging
modalities and molecular biomarkers for enhanced predictive accuracy.
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